UEFENSEL ULt

Security Products Development

Leon Juranic
leon@defensecode.com

Security Products Development

e Q: Why I picked this boring topic
at all?

e A: Avoidance of any hacking-
related topics for fsec (khm.) :)

Security Products Development

e For last 4-5 years, |I've been working on
commercial security products

e This is my story on security products
development

- |[dea

- Motivation
- Obstacles
- Goals

- Results

Security Products Development

e \Why would someone start to develop
commercial security tools on his own?

e Main reason - | was never thrilled to use
other people's software.

- Ego stuff? Possible.
- Money? Definitely.

Security Products Development

e Forlast 13 years, | coded my own security
tools:

- port scanners
- vulnerability scanners
- fuzzers
- exploits
- shellcodes
- network exploitation tools
- misc. junk
- etc.

e | have this retarded obsession that | have to

Know it under the hood, Iin details...

e Few years ago, | decided it's time to make
some money on it. :)

Security Products Development

e | decided to go for Web Application security.
Why?

e Simple - ROI.

e "Cool" hacking stuff takes much more
resources...
- Buffer overflows are kinda rare these days
- High profile bOfs are hard to find (takes time)
- Low-hanging fruits are mostly gone

- Hard to exploit (takes time)
- Buffer Overflows - Questionable ROI

Security Products Development

On the other side...

Web Applications Security - Good RO
Everyone has at least one website

Web Apps are mostly vulnerable as hell
(more than 80% of web sites vulnerable)
Nowadays, more than 60% of server-side
iIntrusions are result of poor web apps

Security Products Development

"Did they get you to trade? Your heroes for
ghosts”. - Pink Floyd

o Sellout?

e No...

e Simple shift of focus from "hard core”
resource consuming hacking stuff, to more
cost-effective security research/audit

e Attacking the weakest link (\WWeb Apps)

WASC 2010 WEB APP VULNS

: ~Brute Force, 5.41%
Cross Site Scripting (XSS), 6.31% »
~Stolen Credentials, 4.95%

Misconfiguration, 3.6%

~~Banking Trojan, 3.15%

SQL Injection, 15.77%
Cross Site Request Forgery (CSRF), 2.7%

Predictable Resource Location, 2, 7%

Process Automation, 2.25%

Content Spoofing, 1.8%

Known Vulnerability, 1.8%
Malvertising, 1.35%
Abuse of Functionality, 1.35%
DNS Hijacking, 1.35%
Unintentional Information Disclosure,
~ ~Credential/'Session Prediction, 0.9%
. Mahvare, 0.9%
Remote File Inclusion (RFI), 0.9°

Demal of Service, 17.12%

~Administration Error, 0.9%
Weak Password Recovery Validation, 0.45%
~OS Commanding, 0.45°%
Forceful Browsing, 0.45%

“Unknown, 19.82%

WASC 2010 WEB APP VULNS

Improper Input Handling, 17.12%

Insufficient Authentication, 10.81%

Improper Output Handling, 19.37%
Unknown, 7.21%

™ Application Misconfiguration, 6.31%

~Insufficient Process Validation, 5.88%
Insufficient Authorization, 2.7%
Abuse of Functionality, 2,25%
: Misconfiguration, 1.8%
7 Insufficient Password Recovery, 1.8%
—_Insecure Indexing, 0.9%
Insufficient Anti y Information Leakage, 0.9%
-automation, 22.07% Insufficient Entropy, 0.45%
Improper Filesystem Permissions, 0.45%

Security Products Development

e GOAL: To create products that will be able
to discover vulnerabilities in web applications
like I'm doing it manually

e To summarize knowledge and experience
gained over the years, and transform it to
security products

Security Products Development

e |n past 4-5 years, |I've coded engines/tools:

o Web Security Scanner
(Black-Box)

o Web Application Source Code Security
Analysis Scanner

(White-Box)

Web Security Scanner

Web Security Scanner

e ['ve started to work on my own Web Security
Scanner

e Tool for fully automated black-box security
audit of web applications

e Simple: Just set it to target URL and hit start

e Goal: To discover all security vulnerabilities
present in target web application/web site

Web Security Scanner

e BENCHMARK-LIKE-GOAL.:

o To develop a tool that will discover Odays in popular
web apps.

e GOAL: Comprehensive, effective and fast
GOAL.: It has to be simple to use
e GOAL: Nice, and user-friendly GUI

Web Security Scanner

e \Web Security Scanner components under
the hood:

o Crawling engine

o Security testing (attack) engine
o Reporting engine

o Brute-force engine

e All components equally important

Web Security Scanner Crawling

e GOAL: To crawl and record every single link
and form on website

e Problems:

O

O
O
O

Various technologies used on modern web sites
HTML, JavaScript, Flash, AJAX, JSON, etc. etc.
- You have to cover ALL of them

- If you miss single link/file, you could miss critical
security vulnerability

How to write something effective, but still non-
Intrusive

Web Security Scanner Crawling

e Problems:

O

You don't want to crash http server or cause DoS on
it

Authentication (Basic, Digest, NTLM, Form, Cookie)
Security testing of links and forms (POST, GET,
HEAD, PUT)

Testing Cookies, link rewrite...

Exclusions (sometimes you don't want to scan
everything)

HTTP/1.0, HTTP/1.1

etc.

Web Security Scanner Testing

e GOAL.: Identify security vulnerabilities in
links/forms/scripts previously collected in
crawling engine

e Problems:

O

You have to create test cases for every possible
security vulnerability class

SQL Injection, XSS, Command Execution, File
Disclosure, etc. etc. efc.

Over 40 vuln. classes

Special modules for Blind SQL Injections and stuff

Web Security Scanner Testing

e Problems:

o Hidden resources brute-force (files, dirs, backup)

o Support for all known security vulnerabilities

o Various technologies (Apache, IIS, PHP, Java, ASP.
Net, ASP, CF, etc.)

o Various OSes (Linux, Windows, *BSD, Solaris, etc.)

o You have to create huge database of security
checks

o Most tests based on response analysis and error
messages

o JavaScript emulation engine
Flash engine

Web Application Static
Source Code Security
Analysis Scanner

Web App Static Source Code Security
Analysis

e \Web Application Static Source Code
Security Analysis Scanner (White-Box)

o Tool to discover security vulnerabilities in web
application source code

e GOAL: To discover all security vulnerabilities

present in target web application source
code

e GOAL: Low, very low false positive rate

Web App Static Source Code Security
Analysis

t has to be effective

t has to be simple to use

t has to be fast

BENCHMARK-LIKE-GOAL: To develop a

tool that will discover Odays in popular web

apps.

e [f it can't discover really complex
vulnerabilities - no use of it. :)

Web App Static Source Code Security
Analysis

Under the hood:

e Code analysis engine

e Data flow analysis engine

e Tainted input recognition engine

e Security scanning and validation engine

Web App Static Source Code Security
Analysis

e | had two choices - lexer or parser.
e | did it with parser
e Simple - Easier to implement, and less work

)

Web App Static Source Code Security
Analysis

e Problems:
o | really can't list them all.. :)
o Various programming languages
o So we have to cut them down to most popular
(market share)

e ASP.Net, Java, PHP, VB.Net, ASP

o Various coding practices/styles

o Third-party frameworks

o Simple pattern matching for simple
vulnerabilities is just not acceptable

Web App Static Source Code Security
Analysis - Market Share

ASP.NET; 21,00%

PHP; 78,10%

Web App Static Source Code Security
Analysis

How it works In a few short steps...

Analyze code files/includes/libraries
Discover all custom classes/methods/
functions/entry points

Simulate code execution

Track and follow user input through code
Discover vulnerable functions

Decide is it false positive

f not, report that stuft. :)

N —

N o OB W

Conclusion

e Don'tdoit!:)
t's never ending game...
e |[f you really want to do it right, you have to
give up on:
o Common sense!!!
o Sleep!!!
o Time...

e Results
o Still waiting.... :)

