

Leon Juranic
leon@defensecode.com

Security Products Development

Security Products Development

● Q: Why I picked this boring topic
at all?

● A: Avoidance of any hacking-
related topics for fsec (khm.) :)

Security Products Development

● For last 4-5 years, I've been working on
commercial security products

● This is my story on security products
development
- Idea
- Motivation
- Obstacles
- Goals
- Results

Security Products Development

● Why would someone start to develop
commercial security tools on his own?

● Main reason - I was never thrilled to use
other people's software.
- Ego stuff? Possible.
- Money? Definitely.

Security Products Development

● For last 13 years, I coded my own security
tools:
- port scanners
- vulnerability scanners
- fuzzers
- exploits
- shellcodes
- network exploitation tools
- misc. junk
- etc.

● I have this retarded obsession that I have to
know it under the hood, in details...

● Few years ago, I decided it's time to make
some money on it. :)

Security Products Development

● I decided to go for Web Application security.
Why?

● Simple - ROI.
● "Cool" hacking stuff takes much more

resources...
- Buffer overflows are kinda rare these days
- High profile b0fs are hard to find (takes time)
- Low-hanging fruits are mostly gone
- Hard to exploit (takes time)
- Buffer Overflows - Questionable ROI

Security Products Development

On the other side...
● Web Applications Security - Good ROI
● Everyone has at least one website
● Web Apps are mostly vulnerable as hell

(more than 80% of web sites vulnerable)
● Nowadays, more than 60% of server-side

intrusions are result of poor web apps

Security Products Development

"Did they get you to trade? Your heroes for
ghosts". - Pink Floyd
● Sellout?
● No...
● Simple shift of focus from "hard core"

resource consuming hacking stuff, to more
cost-effective security research/audit

● Attacking the weakest link (Web Apps)

WASC 2010 WEB APP VULNS

WASC 2010 WEB APP VULNS

Security Products Development

● GOAL: To create products that will be able
to discover vulnerabilities in web applications
like I'm doing it manually

● To summarize knowledge and experience
gained over the years, and transform it to
security products

Security Products Development

● In past 4-5 years, I've coded engines/tools:

○ Web Security Scanner
(Black-Box)

○ Web Application Source Code Security
Analysis Scanner
(White-Box)

Web Security Scanner

Web Security Scanner

● I've started to work on my own Web Security
Scanner

● Tool for fully automated black-box security
audit of web applications

● Simple: Just set it to target URL and hit start
● Goal: To discover all security vulnerabilities

present in target web application/web site

Web Security Scanner

● BENCHMARK-LIKE-GOAL:
○ To develop a tool that will discover 0days in popular

web apps.
● GOAL: Comprehensive, effective and fast
● GOAL: It has to be simple to use
● GOAL: Nice, and user-friendly GUI

Web Security Scanner

● Web Security Scanner components under
the hood:

○ Crawling engine
○ Security testing (attack) engine
○ Reporting engine
○ Brute-force engine

● All components equally important

Web Security Scanner Crawling

● GOAL: To crawl and record every single link
and form on website

● Problems:
○ Various technologies used on modern web sites
○ HTML, JavaScript, Flash, AJAX, JSON, etc. etc.
○ - You have to cover ALL of them
○ - If you miss single link/file, you could miss critical

security vulnerability
○ How to write something effective, but still non-

intrusive

Web Security Scanner Crawling

● Problems:
○ You don't want to crash http server or cause DoS on

it
○ Authentication (Basic, Digest, NTLM, Form, Cookie)
○ Security testing of links and forms (POST, GET,

HEAD, PUT)
○ Testing Cookies, link rewrite...
○ Exclusions (sometimes you don't want to scan

everything)
○ HTTP/1.0, HTTP/1.1
○ etc.
○

Web Security Scanner Testing

● GOAL: Identify security vulnerabilities in
links/forms/scripts previously collected in
crawling engine

● Problems:
○ You have to create test cases for every possible

security vulnerability class
○ SQL Injection, XSS, Command Execution, File

Disclosure, etc. etc. etc.
○ Over 40 vuln. classes
○ Special modules for Blind SQL Injections and stuff

Web Security Scanner Testing

● Problems:
○ Hidden resources brute-force (files, dirs, backup)
○ Support for all known security vulnerabilities
○ Various technologies (Apache, IIS, PHP, Java, ASP.

Net, ASP, CF, etc.)
○ Various OSes (Linux, Windows, *BSD, Solaris, etc.)
○ You have to create huge database of security

checks
○ Most tests based on response analysis and error

messages
○ JavaScript emulation engine

○ Flash engine

DEMO

Web Application Static
Source Code Security

Analysis Scanner

Web App Static Source Code Security
Analysis

● Web Application Static Source Code
Security Analysis Scanner (White-Box)
○ Tool to discover security vulnerabilities in web

application source code
● GOAL: To discover all security vulnerabilities

present in target web application source
code

● GOAL: Low, very low false positive rate

Web App Static Source Code Security
Analysis

● It has to be effective
● It has to be simple to use
● It has to be fast
● BENCHMARK-LIKE-GOAL: To develop a

tool that will discover 0days in popular web
apps.

● If it can't discover really complex
vulnerabilities - no use of it. :)

Web App Static Source Code Security
Analysis

Under the hood:
● Code analysis engine
● Data flow analysis engine
● Tainted input recognition engine
● Security scanning and validation engine

Web App Static Source Code Security
Analysis

● I had two choices - lexer or parser.
● I did it with parser
● Simple - Easier to implement, and less work

:)

Web App Static Source Code Security
Analysis

● Problems:
○ I really can't list them all.. :)
○ Various programming languages
○ So we have to cut them down to most popular

(market share)
● ASP.Net, Java, PHP, VB.Net, ASP

○ Various coding practices/styles
○ Third-party frameworks
○ Simple pattern matching for simple

vulnerabilities is just not acceptable

Web App Static Source Code Security
Analysis - Market Share

Web App Static Source Code Security
Analysis

How it works in a few short steps...
1. Analyze code files/includes/libraries
2. Discover all custom classes/methods/

functions/entry points
3. Simulate code execution
4. Track and follow user input through code
5. Discover vulnerable functions
6. Decide is it false positive
7. If not, report that stuff. :)

DEMO

Conclusion

● Don't do it! :)
● It's never ending game...
● If you really want to do it right, you have to

give up on:
○ Common sense!!!
○ Sleep!!!
○ Time...

● Results
○ Still waiting.... :)

